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SUMMARY 

A computer algorithm has been developed f o r  determining minimum-time 
I 

o p t i m l  control  f o r  continuous low-thrust propulsion systems operating i n  an 
inverse-square gravity f i e ld .  
of using a l inear ized solution about a precomputed nominal trajectory,  the 
two-point boundary va lue  var ia t ional  problem is resolved at a number of updating 
points throughout the  t r i p  with the  present observed state supplying the  new 
i n i t i a l  boundary conditions. It is found that these updating points must be 
more frequent as t he  t r i p  progresses. 
f ini te-difference Newton-Fbphson algorithm t o  descretize and solve t h e  varia- 
t i o n a l  d i f f e r e n t i a l  equations with the two-point boundary value problem as a 
sequence of l i nea r  f ini te-difference equations. 
a subs tan t ia l  f rac t ion  of the  core storage capacity t o  an IBM-7094 computer, 
it may be possible that it could be adapted t o  an advanced on-board computer. 

I n  the  guidance procedure developed, instead 

I 

I 

The algorithm employs the implicit  

Although the  algorithm requires 

The algorithm has been applied in  a guidance study involving a nominal 
266-day minimum-time Esrth-Mars t ra jectory where the  planets are considered t o  
be massless points. 
sens i t iv i ty  of t h e  control  t o  small guidance errors  i n  the  f i n a l  phase of the 
t r i p .  

The most important finding of this study is  the  high 

Applications of the algorithm t o  low-thrust planetocentric f l i g h t  have 
been limited t o  establishing nominal t ra jec tor ies  and associated control  
programs. 
by the  sun and planets considered as point masses is a l s o  presented, including 
the  var ia t ional  formulation and an adaptation of the  algorithm t o  accommodate 
variable mesh-point spacing. Finally, some recommendations f o r  fur ther  research 
i n  t h i s  area are given. 

A discussion of the  same problem i n  the  time-varying f ie ld  generated 
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INTRODUCTION 

The p rac t i ca l  problem of guidance of a space vehicle is  concerned with 
two questions: w h a t  is  t h e  present state (i.e., posit ion and velocity);  and 
how should t h e  spacecraft be controlled from the  present state i n  order t o  
a r r ive  a t  a given destination. Although t h e  first question, t he  problem of 
navigation, i s  by no m e a n s  trivial o r  of minor importance, t h e  present study 
deals exclusively with t h e  second. 

The problem treated i n  the  present study is  t h e  determination of optimum 
control  f o r  a constant specific-impulse, power-limited space vehicle t o  accom- 
p l i sh  rendezvous i n  an inverse-square central  force f i e l d  i n  minimum t i m e .  
Requiring continuous thrusting, t he  minimum-time operation of a low-thrust 
vehicle i s  t h e  l imiting case of t he  constant-thrust, optimum (s ingle  o r  multiple) 
coast mode of operation which maximizes payload f o r  a fixed t r i p  t i m e .  From 
a guidance point of v i e w ,  the  two powered phases of constant th rus t  with coast 
t r a j ec to r i e s  are treated as min imum- t ime  problems (although the  first phase 
has addi t iona l  complexity). 
solved f o r  two regimes: (1) f o r  a th rus t  acceleration of t he  order of one- 
s i x t h  the  l o c a l  gravity acceleration, corresponding t o  interplanetary f l i gh t ;  
and (2 )  f o r  a loca l  thrust-to-weight r a t i o  of t he  order of one-thousandth, 
corresponding t o  planetocentric escape and capture. 

This minimum-time problem has been successfully 

Unlike guidance schemes where the  strategy i s  always given with respect t o  
a precomputed nominal t ra jectory,  t h e  current approach t o  the  problem is t o  
resolve the complete var ia t iona l  system using t h e  current observed state f o r  
new boundary conditions. Referred t o  as updating-the-trajectory, t h i s  procedure 
i s  repeated many t i m e s  during the  t r i p .  
oped i n  t h i s  report ,  the  basic numerical method employed i n  t h i s  guidance 
program i s  the implici t  f inite-difference Newton-Raphson algorithm. 
t h i s  algorithm subs t i tu tes  a set of l inear  f ini te-difference equations f o r  t he  
system of d i f f e r e n t i a l  equations (Euler-Lagrange equations and equations of 
motion) which is  solved (including boundary conditions) by applying a general- 
i za t ion  of t he  c l a s s i ca l  Newton i t e r a t i o n  t o  an approximate solution. 

Described i n  R e f .  1 and fur ther  devel- 

B r i e f l y ,  

The method of second-variation guidance produces a new control, a t  each 
application, which i s  a l inearized solution about t h e  precomputed nominal. 
i s  in te res t ing  t o  note that t h i s  corresponds roughly t o  a s ingle  i t e r a t ion  of 
t he  Newton-Raphson scheme, i .e. ,  each i t e r a t ion  produces the  control which 
would be t h e  solution if the  problem were l inear .  
can achieve solutions which are s t r ikingly non-linear with respect t o  the 
nominal as i s  shown i n  t h i s  report .  

It 

However, multiple i t e ra t ions  

A t  t h i s  point, a f e w  comments t o  qual i ta t ively compare the problems of 
low-thrust guidance and control  with those f o r  high thrus t  may be useful. 
one respect, the  low-thrust guidance and control problems are simpler and l e s s  

I n  

2 
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demanding on hardware. 
high-thrust space vehicle is a very small f rac t ion  of t he  t o t a l  t r i p  t i m e ,  a 
low-thrust vehicle usually has control over a major portion of t he  t o t a l  t r i p .  
Hence, while very small control e r rors  a r e  magnified i n t o  huge miss distances 
i n  the  high-thrust case, fairly large errors  i n  control can be tolerated i n  
low-thrust space f l i g h t  at  least throughout t h e  first half of t he  t r i p .  On the  
other hand, t h e  low-thrust vehicle i s  severely limited i n  the  magnitude of the 
control that can be applied i n  any given small t i m e  period. 
the  terminal guidance phase is  an  extremely c r i t i c a l  period. 

Whereas the propulsion t i m e  (and control t i m e )  of a 

For t h i s  reason, 

Finally, it should be emphasized that t h e  scope of the study does not 
include a computer simulation of low-thrust s m c e  f l i g h t ;  that is, no attempt 
has been made t o  determine expected guidance e r rors  i n  any s t a t i s t i c a l  sense, 
but ra ther  sequences of possible e r rors  have been assumed a t  a number of 
updating points along the  t r a j ec to r i e s  i n  the sample problems. 
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VARIATIONAL EQUATIONS 

I n  f i r s t -order  form t h e  equations of motion of a point mass subject t o  
constant t h rus t  i n  an inverse-square gravity f ield are: 

21 = u, i = 1, 2, 3 (3.1) 

a, cos a1 xi 

1 + b t  r3 
ill = - -  i = 1, 2, 3 (3.2) 

with t h e  constraint  on the  direct ion cosines of t h e  thrus t  vector 

~ c o s a * l  - 1 = 0 

i 

( 3 . 3 )  

Here t h e  xi are Cartesian coordinates, r is the  radius, t is  t i m e ,  a, i s  the  
i n i t i a l  t h rus t  acceleration, and b i s  the  f rac t ion  of i n i t i a l  mass expended 
per un i t  t i m e .  Cos CU, are t h e  direct ion cosines of t he  thrust-acceleration 
vector. 
t i m e  between two given sets of boundary and t ransversal i ty  conditions. 
an extrema1 must s a t i s fy  t h e  Euler-Lagrange equations of the  calculus of 
variations as w e l l  as the constraining equations 1, 2, and 3 above. The 
Euler-Iagrange equations can be determined from the  var ia t ional  Hamiltonian, 

It i s  desired t o  determine the  control ai ( t )  which w i l l  minimize t h e  
Such 

where Tli , A, , and AF are Iagrange multipliers.  
local ly  stationary with respect t o  the  control. 

The Hamiltonian must be  
Therefore, 

(3.4) 

and 

4 
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Subst i tut ing (3.6) i n t o  (3.5) gives t h e  control variables i n  terms of t he  
ad jo in t  variables.  

cos ai = Ai 
P 

where p” E A: 

The Euler-Lagrange equations are now determined from Hamilton’s 
canonical equations : 

a H  a H  
au, a h  

i, = - - ;  ui = -  

a H  , x i  = -  ll, = - - -  bH 
3x1 ani 

The second two r e k t i o n s  of equations (3.8) and (3.9) give the  equations of 
motion. Operating on the Hamiltonian as indicated i n  Equation (3.11) gives 

i = 1, 2, 3 (3.12) 

where 3 

s = ~ X , X i  

1= 1 
which a r e  t h e  Euler-lagrange equations written i n  second-order canonical form. 
The adjoint  variables, A , ,  are the Cartesian components of t h e  primer vector, 
R e f .  2. The equations of motion wri t ten i n  the same form with the  control  
expressed i n  terms of the  adjoint  variables a re  

.. ahi xi 
P 

xi - - F = o  

5 

i = 1, 2, 3 (3.13) 
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where a = a u / ( l  3. b t )  

Equations (3.12) and (3.13) are necessary conditions f o r  an extrema1 arc .  

Transversality Condition f o r  Minimum-Time Rendezvous 

The minimum-time problem can be formulated naturally as a Mayer-type 

For the p r t i c u l a r  case a t  
problem i n  the  calculus of variations where it is  desired t o  minimize a 
function cp of the f inal  boundary conditions. 
hand, t he  function cp is merely the  f i n a l  t i m e  itself ( o r  equivalently cp = C t  
where C is  an a rb i t ra ry  constant). 

The general t ransversal i ty  condition a t  the f i n a l  boundary i s  

a- 7 

where the ul are the  rectangular components of velocity. The posit ion and 
velocity of the  body with which rendezvous is t o  take place can be described 
parametrically i n  t i m e .  

xi = u, = f i ( t )  (3.16) 

The posit ion and velocity components of the vehicle and the  ta rge t  body m u s t  
become iden t i ca l  a t  f inal  t i m e .  Therefore, d i f fe ren t ia t ing  and subst i tut ing 
equation (3.16) i n t o  equation (3.14) gives the f ina l  form of the t ransversal i ty  
condition. 

r 1 

where the  relat ions cos ai = hi and dcp = Cdt have been used. 
P 

6 
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If t h e  rendezvous i s  taking place w i t h  a f ree- fa l l ing  body (such as  a 
planet)  each term of the  summation i n  equation (3.17) i s  ident ica l ly  zero. 
Since equation (3.17) must hold f o r  any small variat ion of f i n a l  time, the 
coeff ic ient  of d t  m u s t  vanish. 
vector can be a r b i t r a r i l y  scaled since C is an arbi t rary constant. 
r e s u l t  stems from the  f a c t  that  minimizing f ina l  time is  ident ica l  t o  
mininizing arLy constant multiple of T i n a 1  t i m e .  

This shows that the magnitude of the primer 
This 

Equations f o r  t he  Numerical Solution 

The numerical solution of t h i s  system of d i f f e r e n t i a l  equations with 
two-point boundary conditions i s  achievedthrough the application of t he  
f ini te-difference Newton-Raphson algori thm. 
t h i s  algorithm f o r  general systems i s  discussed i n  the  next section. A t  
t h i s  point t h e  ac tua l  algebraic expressions used t o  solve the equations 
derived above a r e  given. 

The de ta i led  construction of 

Equations (3.13) and (3.12) form the basic system of s i x  second-order 
d i f f e r e n t i a l  equations. The s i x  conditions a t  the  i n i t i a l  boundary a re  the  
instantaneous posit ion and velocity of a spacecraft, and the  six conditions 
a t  the f inal  boundary are the  time-varying posit ion and velocity of a 
massless t a rge t  point moving i n  a three-dimensional Keplerian e l l ipse .  The 
f i n a l  equation is the  arbitrary scaling of t h e  primer vector 

Define *& = f, (from 3.13) and 'i, = gi (from 3.12). Because of the 
symmetry of the f, and @;1 t he  Jacobian of these equations can be wri t ten 
i n  terms of the following eight expressions. 

7 
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The form of t h i s  Jacobian allows a significant saving i n  the  cmputational 
storage requirement as is  pointed out i n  the appendix of Ref. 1. 

Equation (3.18) can be writ ten as 

i 

and the partial derivative 
addition, t h e  partial derivative 

w i t h  respect t o  each A , ( O )  i s  t r i v i a l .  I n  

i s  a l s o  required. 
need t o  be considered a t  t h i s  point a r e  those of the state of the target  which 
a r e  well known. 

The only remaining derivatives w i t h  respect t o  t i m e  which 

8 



NUMERICAL SOLUTION OF THE NONLINEAR BOUNDARY VALUE PROBLEZG 

This sect ion gives the formal construction of the implicit ,  f i n i t e -  
difference,  Newton-Raphson algoritbm for  the numerical solution of systems of 
ordinary d i f f e r e n t i a l  equations with s p l i t  boundary conditions. The general i ty  
of systems considered w i l l  inclxde a l l  types emom%ered in t h i s  report .  
construction parallels Ref .  1 up t o  the treatment of t ransversa l i ty  conditions. 
The approach ta&n is t o  begin with a basic statement of the problem and 
proceed t o  each extension of the method individually, instead of immediately 
placing the entire problem in its most general formulation. 

This 

The Basic Problem 

Consider, %herefore, the  system of equations, 

defined on the interval, 

with boundary conditions 

yi(a) = ai and y i b )  = Pi 

The f i  are, i n  general, nonlinear expressions, the only r e s t r i c t i o n  on them 
being that a l l  their paztial derivatives with respect t o  the  y i  m u s t  ex i s t .  
solut ion of this system is a vector q = ( y , ,  . . ., Ym) of functions of x which 
s a t i s f y  the equations and boundary conditions on the given interval .  
conciseness, vectors w i l l  be displayed as rows but  should be interpreted f o r  
computational purposes as column vectors. ) 

A 

(For 

Clearly one can evaluate equations (4.1) f o r  any vector of the proper form, 
and if 6 is  taken t o  be the nonlinearr operator defined by the system, the problem 
can be s ta ted  as finding a root  of t he  form e(?&) = 0. 
i t e r a t i o n  f o r  finding roots  of nonlineas, algebraic equations can be generalized 
t o  handle such operator equations ( R e f .  3) .  That is, given an appropriate 
i n i t i a l  guess, or s t a r t i n g  solution, To, the i t e r a t i o n  

The Newton-Raphson 

9 



where @' is i n  some sense which we need not define here the "derivative" of @ , 
w i l l  usually y ie ld  a sequence {@&I which converges t o  the desired solution . 
The goal here is  t o  wri te  the i te ra t ion  (4.2) f o r  the system (4.1) i n  a manner 
which is  numerically t ractable .  The notation can be simplified by deTining 
p k  = (\bk+l - v k  and rewriting (4.2) without the  i t e r a t ive  subscript k as 

It is  understood that 63 i s  the change i n  vat the given s tep  i n  the i te ra t ion .  
Equation (4 .3)  w i l l  ultimately be writ ten as a large,  f i n i t e ,  matrix equation 
where - [ 6' (9) 1 becomes a matrix, 6 (3 ) the known r igh t  hand vector, and @ 
the unknown vector t o  be solved for .  

To proceed, one now represents each function y i  by i t s  value a t  n points 
X j ,  and Y i ( X  - )  w i l l  most often be denoted by y i j .  
now be usefu?. Y j  = (yi . ,  . . ., ymj), and i n  this  representation yf = 01, . . ., Yn). dus 
numbers. 

using the vector function F = ( f ly  . . ., f,), it w i l l  become prac t ica l  t o  
write (? = (PI, . . ., Pn). 

The following notation w i l l  

has been reduced t o  an ordered mm iuple of 

= (D1, . . ., %) where D j  is  the vector of i t e r a t ive  charges at  X j ,  and 
(Note that it is a vector, - not a matrix.) Similarly, 

F j  w i l l  be used t o  denote F(Yj, X j ) .  

I n i t i a l l y ,  the points X j  w i l l  be equally spaced according t o  the formula: 

x 3 = a + (j-1)h , (4.4) 

where 

h = (b-a)/(n-1) . (4.5) 

Note t h a t  x1 = a, and Xn = b. 
whereby the x j  may be variably spaced according to  some appropriate scheme. 

Returning now t o  equation (4.1), the standard three-point formula, 

However, a method w i l l  a l so  be discussed 

2 
d Y i  

is  used t o  approximate the second derivatives, - . Combining (4.1) and 
ax2 

10 
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i 
Pp i 

. I  

1 

P 

P 

P ’  j+i 1 

j-l f 

I 
- 1  I 
* I  

n -1 P 

(4.6) and using some elementary algebra, one can now write the operator @ fo r  
the given, d i scre te  representation of . Y 

2 <  j C n  - 1  , - -  3’ Pj = Yja - 2Y + Y - h2F 3 5+1 

Now the  i t e r a t i o n  (4.3) can be immediately put i n  f i n i t e  matrix form. 

( 1  

’ - I, 21 + h2Fi, - 1 

t - I, 21 + h2Fj-l, - I  

- I, 21 + h2F’ - I 3’ 
- I, 21 + h2Fj+l , - I  

I 

I 0 
- I, 21 + h2Fi - 

(4.7) 

I 
I i s  the nxm ident i ty  matrix, and F .  axe the Jacobian matrices 

J 

11 
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3’ evaluated using Y and x 3 
The matrix i n  equation (4.8)’ which can be denoted as - [ @(y)], is a 

special  case of the general block tr i-diagonal matrix 

(4.10) 

whose solution may be eas i ly  obtained by using the d i rec t  elimination formulas 

(4.11) 

followed by the back substi tution 
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(4.12) 

for  the solution. 
is known t o  be positive-definite i n  the v ic in i ty  of a solution of i n t e re s t  
( ~ ~ e . ,  one not containing a conjugate point). This condition guarantees that 
the inverses indicated i n  (4.11) exis t ,  and that the system is  w e l l  conditioned. 
Notice, also, that the i n i t i a l  and final D. may be eliminated f romthe  system 
prior  t o  the application of formulas (4.113 and (4.12). Here, and i n  the 
s~bsequent d i s c ~ s s i m  of +xarrsversality condi;t.ions, smh  a move is c o q l e t e l y  
appropriate. 

For systems ar is ing from variat ional  problems - [ s'(y)] 

Once a starting solution has been determined, the i t e r a t ion  (4.8) is 
repeated u n t i l  the  element w i t h  largest absolute value i n  3 has been brought 
below some reasonable epsilon. 
Raphson algorithm, t h i s  convergence cr i ter ion can usually be achieved i n  fewer 
than t en  i te ra t ions .  

Due t o  the quadratic convergence of the Newton- 

General Boundary Conditions 

The simple boundary conditions considered f o r  (4.1) are c lear ly  not 
adequate fo r  the majority of problems. 
the algorithm is t o  show how more general conditions can be handled. 
versa l i ty  conditions can be included a t  either boundary i n  a similar and 
symmetric manner, and the analysis presented below i n  terms of the i n i t i a l  
boundary i s  eas i ly  applied t o  the finalboundary. 

The next s tep  i n  the construction of 
Trans- 

Consider, therefore, the se t  of conditions 

The formula, 

(4.14) 

is  used t o  evaluate these first derivatives t o  the same order of accuracy that 
(4.6) brings t o  the second derivatives. 
point a assumes knowledge of the functions y i  a t  the point xo = a - h, and it 
is  necessary t o  introduce the quantit ies YO = (yl(a  - h>, . ., ym(a - h ) )  and 
the associated Do and Po. 
that used above, as 

However, applying (4.14) a t  the i n i t i a l  

Now (4.13) can be written,  i n  a manner analogous t o  
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and (4.8), the discrete  form of @, becomes 

Po = I ,  

1 C  j c n  - 1 ,  - -  - h2F 
3’ P. = Y - 2Yj + Yj+l 3 3-1 (4.16) 

I n  order t o  have a suff ic ient  number of equations t o  solve fo r  the new unknowns, 
I+,, the discrete  form the d i f fe ren t ia l  equations (4.1) m u s t  be also writ ten at  
the boundary, a. 
which become 

The matrix equation (4.8) is  only affected i n  the upper rows; 

I -I, 21 + haFi, - I 

- I, 21 + h2F6, - I 
i 1 
1 I 
I 

(4.17) 

i J !*I c ’  i 
wi 

where the 3 ’ are the Jacobian matrices {-] , 1 < i, u < m, evaluated using 3 b y v  
Y j  and x j .  
either by eliminating 
one ., Thus 
i t e r a t ion  can be carr ied out as above. 

The matrix i n  (4*;7) can  be reduced t o  block tri-diagonal form 

the solution equations (4.11 9 and ( k  .12 1 s t i l l  apply, and the 
or by considering the f i rs t  two rows of subblocks as 

Additional Parameters 

It is  not unusual f o r  a system of equations, especially those a r i s ing  from 
a var ia t ion problem, t o  depend not only on a vector of unknown fun---lons, , 
but a l so  on a vector of unknown parameters. Next, the case of including one 
such unknown parameter into the construction of the algorithm w i l l  be treated, 
and the extension t o  any number of such parameters can be made a similar fashion. 

14 



Consider, therefore, i n  l i e u  of (4.1), the system of equations 

d2Y. 
(4.18) 

where r is an unknown scaler parameter. 
additional constraint ,  

It is inrmediately obvious that an 

is needed t o  define the system. 
depend on r a t  all. 
and g only serves t o  complete the definition of 

14 9) are now augmented by an additional column, 

What may not be so obvious is  that g may not 
That is, r m y  enter the system completely through the f i ,  . bvd 

The analysis proceeds exactly as before except that the Jacobian matrices 

(4.20) 

which necessitates changing the form of the matrix equation (4.8). 

The following notation w i l l  be used t o  describe these changes. Define 

bf m < j C n - 1, R1 and Rn are the vectors of 
bf 1 

R .  = (ha- , . . ., h2-), 2 - 
ar ar 

- J 
partial derivatives w i t h  respect t o  the boundary condition equations, and 

(Note that G . and& are row vectors. ) Also, define dr as the i t e r a t ive  change 
i n  r a t  the 2 t h  i terat ion.  

Thus, t he  matrix i te ra t ion  including dr can be written as an augmented 
version of (4.8). 



E-910350-ll 

d e f ~ e d  by the equations 

which lead to ,  by elemen- matrix algebra, the relat ions 

and (4.23) 

Equations (4.23) become more complicated if  d, is a vector, i.e., if there is 
more than one unknown parameter, but i n  their  present form the generalization 
t o  tha t  case is  immediate. 

Since most of the  calculations i n  equations (4.11) and (4.12) involve the 
matrfx, it should be noted that there is a minimum of extra  work required t o  
compute the two vectors, and . Also, i n  most cases, the vector& is 
quite sparse, a fact which considerably simplifies the calculation of the 
inner products in (4.23). 

Variable End Points 

A particular problem of interest ,  and one which requires further insight, 
is the case where one of the end points, say by is itself am unknown pazameter. 
Any arinimum time problem is such a variable end-point problem. Going back t o  

16 
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equations (4.4) and (4.5), one sees tha t  each value of the independent variable, 
xj, and the mesh spacing, h, depend on b. Thus, if b is  unknown, the only t r u l y  
independent variable remaining is the mesh point nunher j. 
f ac t s  are realized, the analysis presented above is completely applicable. 
point of the matter is  that every occurrence of xj  and h must be considered as  
a function of b when the elements of the v e c t o r R  are  formed. This s i tuat ion 
gives rise t o  some complicated algebraic expressions, but no real problems. 

However, once these 
The 

Variable Mesh Spacing 

!!?he final. consiaeratioo given here in the c m s t r w t i o c  of the algorit-  i s  
the inclusion of variable mesh spacing. The attempt here is t o  formulate the 
variable mesh spacing i n  a manner which allows all of the above analysis to 
remain applicable. 
ated is given by an a rb i t ra ry  sequence ej]. 
elements of this sequence is  preserved i n  the spacing of the actual x3 by the  
formula 

The spacing of the points where the functions y i  a re  evalu- 
The r e l a t ive  spacing of the 

= a + gj(b/gn) , (4.24) 

- x  1 I j L n - 1 ,  Similarly, one can define h j  = xj+l 3' which now replaces (4.4). 
and write 

in place of (4.5). 
replaced by the appropriate divided difference formulas, 

Equations (4.6) and (4.19) axe no longer valid and must be 

and (4.26) 

It appeaxs t h a t  the algebraic complications, especially those associated with 
the variable end-point problem, have been increased; however, a l i t t l e  mani- 
pulation can f a c i l i t a t e  matters. Defining u = hd/hj-ii v = (hj-l + hj>/hj-l 
and w = h (h  + h )/2, only w is  a function of b, and 

j 3-1 S 
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wij-1 - Vij  + Y i j + l  
W Aa(Yij) = 

Thus, the only change in equation (4.7) is  

and the general row of (4.8) becomes 

2 5 j C n - 1 ,  - (4.28) 

Therefore, the general,block tri-diagonal, form of the solution remains the 
same when variable mesh spacing is  introduced i n  the above m e r .  

18 
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GULDANCE FOR LOW-THRUST 1 " E T A R Y  -FLIGHT 

The implici t  finite-difference Newton-Raphson algorithm has been applied 

The f l i gh t  i s  assumed t o  take place i n  the  solar  cen t ra l  force 
t o  a guidance study involving a nominal 266-day minimum-time Earth-Mars t r a -  
jectory.  
f i e l d  and t h e  two Flanets a re  assumed t o  be massless points. 
optimum nominal t ra jectory and associated control were determined. Then a 
sequence of a rb i t ra ry  but physically possible guidance e r rors  were assumed 
a t  four points along the  nominal trajectory corresponding roughly t o  l/5, 
2 /5 ,  3/5, and 4/5 of the t o t a l  t r i p  time. 
and a re  presented herein. 

I n i t i a l l y  the 

The resul t ing changes were obtahed 

The purpose of the guidance study i s  more t o  exercise and demnstrate 
the capabi l i t i es  of the algorithm rather  than t o  explore the prac t ica l  problems 
of low-thr i is t ,  interplanetary ga idaxe  ir, de ta i l .  
l imited cases investigated a re  discussed in  d e t a i l  i n  order t o  establish a 
c red ib i l i t y  fo r  these results. 

However, the results of the  

I n  the algorithm the updating process takes place as follows: Suppose 
the optimum trajectory and associated adjoint variables (i .e., the control 
variables) from cer ta in  boundary conditions a t  time t, exist i n  the  computer 
and it is  desired t o  update the trajectory t o  new boundary conditions a t  a 
l a t e r  time h. (These new boundary conditions a t  ta w i l l  generally be the 
s t a t e  on the  old nominal f'rom t.1 a t  time 
f a c t  t ha t  t he  nominal has not actually been followed as  specified.) 
section of the old nominal from t o  the f i n a l  t i m e ,  T, is  used as a 
st.arting approximation for  the updated trajectory from the  new boundary 
conditions a t  t. In t h i s  updating process the number of mesh points is  
conserved. Therefore, it i s  necessary t o  interpolate  between mesh points 
on the old nominal since there  are only (1 - &/T) N mesh points i n  the 
segment between t and T (where N is  the  t o t a l  number of mesh points).  

plus an error  vector due t o  the 
The 

It may be t h a t  the required new boundary conditions a t  a re  su f f i -  

In this case, it 
cient ly  remote from the nominal a t  t h i s  point that the Newton-Raphson 
i t e r a t ion  cannot converge d i rec t ly  on the new solution. 
i s  necessary t o  repeat the updating process a number of times f o r  a sequence 
of smaller e r ror  vectors leading up t o  the  required t o t a l  error vector. It 
has been t.he authors' experience that convergence can always be obtained i f  
small enough steps a re  taken, providing, of course, t h a t  the updated t r a -  
jectory i s  of the same class  as  the old nominal; e.g., it makes the same 
riumber of c i r c u i t s  around the sun. 

The density of updating points is somewhat a rb i t ra ry  as far as the 
algorithm is  concerned. It i s  obvious that the longer the time interval  
between updating points the  larger  w i l l  be the guidance e r rors  involved. 
@e l i m i t  would be pract ical ly  continuous updating so tha t  only the  i n i t i a l  
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control on each successive updated program actual ly  would be followed. 
Operationally, taking into account factors re la ted  t o  onboard computational 
capabi l i t ies ,  accuracy of navigational equipment, and precision of thrusting 
control, there  probably ex is t s  a best  spacing of updating points along the 
t r i p .  
f i n e r  a s  the t r i p  progresses. 

The results of t h i s  study show that  the  spacing certainly mst get 

Rmerical  Accuracy Determination 

Ezfcjre proceeding t o  the resat . :  of the g!!Tdmce study, a few preliminary 
r e su l t s  are presented t o  determine t h e  numerical accuracy of the algorithm fo r  
the par t icu lar  problem at  hand. 
t i m e  f o r  the  nominal Earth-Mars trajectory as a function of the number of mesh 
points employed i n  the calculation. 
i n  days while t ha t  on the l e f t  i s  i n  T units which are the natural nondbznsional 
un i t s  of time used i n  the calculations and r e s u l t  from se t t ing  the gravi ta t ional  
constant of the sun and the Earth’s mean o rb i t a l  radius each equal t o  unity 
(17 = (a)-’ years). 

Figure 1 shows the resul t ing minimum t o t a l  

The scale on the r igh t  of the figure is  

Both scales are  greatly expanded. 

The r e su l t s  of Fig. 1 indicate tha t  about 200 mesh points are  adequate 
fo r  t h i s  par t icu lar  t ra jectory.  
number of mesh points beyond 200 i s  very s m a l l .  
data plot ted against  mesh point spacing instead of number of mesh points.  
This plot  can be interpreted more generally than the  previous one because 
the number of mesh points is very closely connected with the par t icu lar  
problem a t  hand, while the mesh point spacing is  not. 
generally that the mesh point spacing should be kept below about 2.5 x 
units .  

The increase of t r i p  tFme with increasing 
Figure 2 shows the same 

It can be said 
T 

Figure 2 indicates the  sens i t iv i ty  of the i n i t i a l  control t o  the number 
Theta of mesh points exployed i n  the  nominal 266-day Earth-Mars t ra jectory.  

(9)  i s  the angle between the projection of t he  thrus t  vector unto the  ec l ip t i c  
plane and the  direction of t he  vernal equinox. 
subsequent t ex t  and figures as the in-plane steering angle or control angle. 
Phi (0) is  the out-of-plane angle between t h e  thrus t  vector and the  ec l ip t i c  
plane. In the  figure, both curves approach t h e i r  l imit ing asymptotes a t  
about 300 mesh points. 

It w i l l  be referred t o  i n  the 

For any given problem, it is important t o  s t r i k e  a good compromise 
between machine time and accuracy. 
t o  the number of mesh points. A good rule of thumb t o  follow is  t h a t  an ISM 
7094 computer can perform about 60 mesh-point i t e ra t ions  per second. 
on the r e su l t s  of Figs. 1 and 3, 200 mesh points were used throughout the 
Earth-Mars guidance study. It should be recalled tha t  w i t h  each updating 
of the trajectory,  the accuracy of  the algorithm improves sicce the same 
number of mesh points a r e  being put in to  a smaller time interval .  

The machine t i m e  is d i rec t ly  proportional 

Based 
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The Nominal !trajectory and Control 

Figure 4.0 is  an ec l ip t i c  plane projection of the nominal Earth-Mars 
minimum-time constant-thrust t ra jec tory  and the  associated thrust ing program. 
The vectors i n  the  f igure represent the instantaneous acceleration on the  
vehicle due t o  the  constant thrust .  They a re  drawn t o  a scale of 0.5 i n .  = 
0.001 meter/sec2 and the  directions of the i ec to r s  correspond t o  the  in-plane 
s teer ing angle, 8 .  I n  fac t ,  the  vectors shown i n  the figure a re  the ec l ip t i c  
plane projections of t h e  computed three-dimensional thrust-acceleration 
vectors. 
plane a t  Ez,rth's o r b i t  and co?xes cp o ~ t .  c4 the paper imtil it. has an  a l t i t ude  
of about four thousandths of an AU at Mars) the  ec l ip t i c  plane projection 
corresponds very closely t o  the actual t ra jectory and thrust-acceleration 
vectors. 

Because the t ra jec tory  i s  almost coplanar (it starts i n  the  ec l ip t i c  

The d i f fe ren t  apparent lengths of  the thriist-wcelerat5on vectors i n  
Fig. 4.0 and the following figures a re  due t o  two causes: (1) When the vector 
i s  appreciably out of the  ec l ip t i c  plane, it appears t o  be shorter  because of 
foreshortening onto t h e  e c l i p t i c  plane; (2) The thrust-acceleration vector 
increases monotonically with time because t h e  vehicle has constant th rus t  and 
i s  losing mass. 

It was assumed that the  i n i t i a l  thrust acceleration of t he  vehicle is  
5.337 x 
of its i n i t i a l  mass per kilosecond. 
impulse of 5000 sec, a powerplant specific weight of about 19 kg/kw, and a 
powerplant *action of + . 

meters/sec' and that the  vehicle exhausts 1.090 x lo-' f ract ion 
These constants correspond t o  a specif ic  

The thrust-acceleration vectors a r e  evenly spaced i n  time (every 13.3 
days) along t h e  t ra jec tory  and the marks on the o rb i t s  of Earth and Mars show 
the posit ions of these planets a t  the  respective t i m e s  f o r  which the  vectors 
a re  drawn. 
2444180 which is the Julian date corresponding t o  November 25, 1979. 

t 

I The date of departure from Earth i s  given i n  the  figure as 

The nominal t ra jec tory  of Fig. 4.0 i s  divided i n t o  three thrust ing 
phases. 
acceleration vector is pointed generally outward away from the Earth thereby 
increasing the r ad ia l  velocity.  
between the first and t h i r d  phases. Beginning a t  about 120 days, the  thrus t  
acceleration vector swings rapidly around clockwise u n t i l  a t  173 days it is  
pointed almost exactly along t h e  vehicle - Mars l i n e  of s ight ,  d i r ec t ly  away 
from Mars. 
phase o f  thrusting from173 days t o  the end of the t r i p .  

I 

During the  first phase fromlaunch t o  about 120 days, the thrus t  

The second phase is a t r ans i t i on  region 

This s i tua t ion  pe r s i s t s  during t h e  en t i r e  t h i r d  and terminal 

It is  in te res t ing  to  note tha t  the  re la t ive  velocity vector of the 
I vehicle with respect t o  Mars is  pract ical ly  along t he  l i n e  of s igh t  between 
i the two points throughout the  e n t i r e  terminal phase of the t r i p .  This 
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orientat ion i s  not readi ly  apparent from the figure,  but it has been verified 
by the numerical data. I n  the terminal region the respective positions of 
the  vehicle andMars with respect t o  the sun a re  approximately the  same s o  
tha t  the  nonuniformity of the  gravity f ie ld  does not produce much ef fec t  and 
the s i tua t ion  could be approximated as occurring i n  a constant gravity f i e l d  
or  f ie ld- f ree  space. To simplify the visualization s t i l l  further,  assume 
t k a t  the  thrust acceleration is  constant. TheE the guidance strategy i n  the 
terminal phase is simply t o  negate the re la t ive  velocity v i n  the  time t o  go, 
T-t .  For a given value of thrust acceleration, a, the velocity a t  the  
beginning of the  terminal phase must sa t i s fy  the  re la t ion  v = a(T- t )  . 

The control strategy f o r  the r e a l  case i n  Fig. 4.0 i s  qual i ta t ively the 
same, tha t  i s , t o  maneuver the  vehicle onto a co l l i s ion  course with Mars with 
a r e l a t ive  velocity between the two when entering the terminal phase that 
roughly s a t i s f i e s  the v = a ( T - t )  relationship. 

The f ie ld-free analogue is very useful f o r  a qual i ta t ive understanding 
of the central  force f i e l d  case. 
Fig. 4.0 have the  same qual i ta t ive characterist ics as a minimum-time tra- 
jectory between two moving points i n  f ie ld-free space. 
spent accelerating away from the first body while the terminal phase i s  
spent decelerating in to  the  ta rge t  body. A discontinuity i n  the middle 
f o r  the f ie ld-free case i s  t ranslated into the  t rans i t ion  region of t h e  
central  force-field case. 

Thus the whole t ra jectory and control of 

The first phase is  

Although the absolute value of the  primer vector magnitude is  not 
important, the  re la t ive  change of the primer vector magnitude over the 
t ra jec tory  indicates the re la t ive  importance of the thrus t  a t  a par t icular  
point i n  the  t ra jec tory  with respect t o  meeting the f i n a l  boundary conditions 
i n  minimum time. I n  other words, the re la t ive  magnitude of the primer vector 
i s  a measure of the influence of the control on the  payoff. Figure 4.1 
shows a time his tory of the nominal primer vector magnitude. It is  not 
surprising that the minimum value occurs i n  the t rans i t ion  region where 
the thrust-acceleration vector i s  swinging rapidly around. If a coast 
period were allowed, it would occur around the point of minimum primer 
vector magnitude. As w i l l  be made c lear  by other primer vector plots,  
the  qual i ta t ive character is t ics  of the trajectory and control program are 
very closely related t o  the t i m e  h is tory o f  the  r e l a t ive  primer vector 
magnitude. 
the scale i s  always a r b i t r a r i l y  chosen f o r  t he  i n i t i a l  point.  While t h i s  
choice i s  theoret ical ly  completely arbitrary, some choices tend t o  reduce 
roundoff errors  more than others depending upon boundary conditions. 

Incidentally, i n  Fig. 4.1 and t he  remaining primer vector p lo ts  

Figure 4.2 shows the time history o f t h e  in-plane and out-of-plane 
steering angles fo r  the nominal trajectory of Fig. 4.0. Although these are  
the o n l y  control variables generated by the output of the algorithm and may 
not be the most useful for  a guidance system, they may be readi ly  converted 

22 



E-910350-11 

in to  any set of parameters that suff ic ient ly  define the  control such as angles 
with respect t o  vehicle-planet and vehicle-sun l i n e s  of s ight .  

Trajectory Updated a t  53.2 Days 

A t  115, 215, 315, and 415 of the t r i p  time, the  t ra jec tory  has been up- 
dated and various possible guidance errors assumed. 
assumed simultaneously i n  the  six coordinates of t h e  vehicle i n  phase space. 
These e r ro r s  change the i n i t i a l  boundary conditions as follows: 

These e r rors  have been 

where the e ' s  represent the errors, the unprimed terms denote the spherical  
coordinates and velocity components of the previous nominal and the  primed 
terms denote the  corresponding quant i t ies  including the error .  

For comparison, Fig,  5.0 shows the  nominal t ra jec tory  updated a t  53.2 
days. 
assumed: 

For the t ra jec tory  of Fig. 5.1, the  following guidance e r rors  were 

Comparison of Fig. 5.1 and Fig. 5.0 shows t h a t  these guidance e r rors  produce 
no perceptible change i n  the  control o r  t r i p  time. I n  the following f igures  
the e r rors  a re  increased, always keeping the magnitudes of  all components 
equal and the  sign sequence unchanged. 
a re  always w i t h  respect t o  the or ig ina l  nominal. 

The er rors  indicated i n  the  f igures  

Figures 5.2 through 5.4 show the  effects  of 0.1, 1.0, and 2 . 6  errors,  
respectively, on the  t ra jec tory  and control program. The minimum t r i p  time 
increases from 266.5 days fo r  0.1@ errors t o  278.3 days f o r  2 . 6  e r rors .  
The posi t ion e r rors  show up i n  this sequence of f igures  i n  tha t  t he  i n i t i a l  
point of t he  t ra jec tory  i s  moving back and i n  with respect t o  the mark on 
the Ear th ' s  o rb i t  indicating Ear th ' s  position at 53.2 days. The s teer ing 
program remains qual i ta t ively t h e  same although a perceptible change can be 
seen i n  the figures, especially i n  the t rans i t ion  region. 

Figure 5.5 shows a p lo t  of the  re la t ive  primer vector mgnitude for  
t he  nominal and for  the 2 . 6  error .  
jectory does not change even f o r  errors  as l a rge  as 2.0$ a t  53.2 days. 
posi t ion of m i n i m  primer vector remains essent ia l ly  the  same. 

It i s  seen that t h e  nature of the t r a -  
The 
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The changes i n  t h e  in-  and out-of-plane control angles are shown i n  
d e t a i l  by Figs. 5.6 and 5.7 fo r  0, 1 .O, and 2. CY$ errors .  
detectable i n  the  t ra jec tory  figures, the required control changes a re  eas i ly  
seen i n  these two p lo ts .  
required i n  the  out-of-plane control i n  the t rans i t ion  region as the  e r rors  
increase. 

Although not readi ly  

Par t icular ly  noticeable is the  growing spike 

I n  summarizing the results f o r  53.2 days, it can be s ta ted  t h a t  la rge  
errors  r e s u l t  i n  only small increases i n  minimum t r i p  t i m e  and small changes 
i n  t h e  control  program except possibly f o r  those changes required i n  the  
t r s n i t f o n  region. "his basic sitl_z~t.ic?n I s  believed to  prevail ,  more or  less, 
for  a l l  updating points before the  minimum primer vector point on the  nominal 
t ra jec tory  . 

Trajectory Upchteci at106.4 Days 

The results fo r  106.4 days pa r t i a l ly  support t h e  statement made above 
depending upon w h a t  i s  meant by large errors. 
shows the  or ig ina l  nominal updated at  106.4 days. 
the t r a j ec to r i e s  and control programs result ing from 0.01 and 0.16 er rors  
respectively.  Neither s e t  of e r ro r s  result i n  much of a change i n  control 
and the  increase i n  minimum t r ip  time is less than 0.05 days.  
errors, however, the changes are s ignif icant  a s  shown by Figs. 6.3 and 6.4. 
The minimum t r i p  time increases t o  270.9 and 280.7 days respectively.  
the t r ans i t i on  region i s  moved back i n  t i m e  and the thrust-acceleration vector 
swings around counterclockwise instead of clockwise. 

Again for  comparison, Fig. 6.0 
Figures 6.1 and 6.2 show 

For 1.0 and 2.@ 

Also, 

Figure 6.5 shows the  r e l a t ive  primer vector magnitude f o r  0 and 2.@ 
errors .  
f o r  2 . 6  e r rors .  
approach of the  t r ans i t i on  region. 

It is  seen that the  minimum primer vector point has been moved back 
This fac t  correlates  with the  observation of the e a r l i e r  

Figures 6.6 and 6.7 give detai led time h i s to r i e s  of the in- and out-of- 
plane s teer ing  angles, respectively.  
the  thrust-acceleration vector between the nominal case and the  1.0 and 2 . 6  
e r ro r  cases is plainly shown. 
nominal case, a spike i n  out-of-plane steering angle grows i n  the t r ans i t i on  
region up t o  1.6 er rors  and then dies out again a t  2 . 6 .  This same e f f ec t  
can be seen i n  Fig. 6.3 by observing theshor t length  of the ecliptic-plane 
projection of the t h i r d  th rus t  acceleration vector. A physical explanation 
of  t h i s  phenomenon is  not readi ly  forthcoming, except t o  say that it i s  
necessary t o  s a t i s f y  the new boundary conditions. 

I n  Fig. 6.6 the change i n  ro ta t ion  of 

Figure 6.7 shows that, s t a r t i ng  f romthe  
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Trajectory Updated a t  159.6 Days 

After the point of  minimum primer vector magnitude on the nominal t r a -  
jectory which occurs a t  about 2.5 7 ' s  = 145.5 days, the updated t ra jectory and 
control become very sensi t ive t o  guidance e r rors .  
phase of t he  t ra jec tory  errors as la rge  as O . l @  did not cause appreciable 
changes t o  occur, i n  the  t e m n d .  phase errors as small as  C.OOO5k can cause 
very large changes i n  the  control as w i l l  be demonstrated subsequently. 

Whereas i n  the i n i t i a l  

This f a c t  is  not surprising if a corresponding one-dimensional f i e ld -  
f ree  case is analyzed. Suppose that a constant thrust-acceleration vehicle 
i s  d i rec t ly  approaching the target  body with a re la t ive  velocity given by 
the re la t ion  v = a(T- t )  and re la t ive  position by r = 3 a(T-t)'. 
case, the control program i s  simply a rearwardly directed constant thrust 
acceleration. 
tirae a2proaching zero velocity at  f i n a l  tim T when ths re la t iye  posit ion i s  
also zero. 
single equation 2 = 2ar. Now suppose that due t o  a guidance error  the value 
of 3 is very s l igh t ly  l e s s  than 2ar. It is evident t ha t  i n  t h i s  case a t  the  
i n i t i a l  point i n  the  t ra jec tory  a small amount of forward thrus t  acceleration 
will be required t o  increase the velocity t o  sa t i s fy  the relationship and thus 
t o  achieve rendezvous i n  minimum time. 
would produce a large change i n  the control a t  the i n i t i a l  point. 

I n  this 

Such a program results i n  a l i n e a r  decrease of velocity with 

Eliminating time, the above relations can be expressed by the 

Hence, a very small guidance e r ror  

Consider then the  other case of 9 very s l igh t ly  greater  than 2ar. I n  
t h i s  case t h e  vehicle will go through the  ta rge t  point a t  a f i n i t e  velocity 
even though the thrust acceleration is  directed backward the whole w a y .  
Nothing can be done t o  prevent t h i s  i n  this one-dimensional case. 
backward thrust ing program i s  maintained, a t  some point j u s t  s l igh t ly  beyond 
the ta rge t  t h e  re la t ive  velocity will be reduced t o  zero. 
has been reduced t o  that of rendezvous i n  minimum t i m e  between two points 
a t  r e s t  with respect t o  each other. 
t o  maintain the thrust acceleration i n  the same direction u n t i l  half  the 
distance has been traversed and then turn it around i n  the opposite direction 
i n  order t o  come t o  r e s t  a t  the  target  point. 
small guidance error  causes a la rge  change i n  control a t  the f i n a l  point of 
the t ra jectory.  

If the 

Now the problem 

The proper control program is obviously 

In  t h i s  second case, a very 

Getting back t o  the  cent ra l  force-field case a t  hand, there a re  a number 
of factors  which cause the  s i tuat ion t o  be more complicated than the  simple 
case ju s t  discussed: 

1. The thrus t  acceleration i s  not constant but l inear ly  increases 
with time; 

2 .  The t ra jec tory  and control have three degrees of freedom instead 
of one; and, 
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3. The small difference i n  the  gravity force on the ta rge t  and vehicle 
causes a warping of the s t r ight- l ine r e l a t ive  t ra jectory of the 
f ie ld-free case. 

These factors ,  however, a r e  not important enough t o  destroy a quali tative 
s imi la r i ty  between the two cases. 
i n  t'ne r e s u l t s  yet  t o  be presented. 

This similari ty w i n  be readily apparent 

Again f o r  comparative purposes, t he  o r i g i m l  nominal t ra jectory is  shown 
updated a t  159.6 days with zero error  i n  Fig. 7.0. 
the rea-d ta  f a r  o .SX a d  c 5rr~ris. ?%ere are  EO a2p.rent changes. 
Figures 7.3, 7.4, and 7.5 show the resul ts  f o r  0.0042, 0.0046, and O.OO5O$ 
errors  respectively. 
f i n a l  point caused by these smal l  errors .  

Figures 7.1 and 7.2 show 

Note the increasing la rge  change i n  the control at  the  

The or iginal  nominal t ra jectory has a vaiue of 1?/2ar k: 1 throughout the 
terminal region (where v and r are  the relat ive velocity and radius of the  
vehicle w i t h  respect t o  Mars) and the re la t ive  velocity vector is  pointed 
f romthe  vehicle d i rec t ly  toward Mars. Based upon the discussion o f t h e  one- 
dimensional f ie ld-free case, therefore, it i s  suspected tha t  the assumed 
guidance e r rors  make 9 / 2 a r  > 1. 
+0.0042 and el = ea = 
important e r ror  is sg, the  error  i n  in-plane circumferential velocity. 
quantity se, being negative, contributes t o  an increase of the r e l a t ive  
veloci ty  of the  vehicle with respect t o  Mars. 
vehicle with respect t o  the sun decreases (el is  negative) and since the  
vehicle is inside Mars orbi t  t h e  vehicle-Mars distance also increases as a 
r e su l t  of these guidance errors .  
ever, shows that the velocity error  dominates, thereby causing ?/2ar t o  
become greater  than i ts  nominal value. 
l i t t l e  greater  than unity since the thrust-acceleration is  not constant, 
but increasing with time.) 
the term $/2ar i s  not surprising since the velocity i s  squared. 

Such i s  found t o  be the  case f o r  e2 = 
= 65 = = -0.0042, f o r  example. By far, the most 

The 

O f  course, the radius of the 

A detailed inspection of the numbers, how- 

(Actually, the  nominal value is  a 

The f ac t  that the velocity e r ror  dominates i n  

The r e s u l t s  of the algorithm a re  i n  qual i ta t ive agreement with the  
f ie ld-free case. 
come back as the one-dimensional f ield-free case was constrained t o  do 
(although t h i s  s i tuat ion is  not excluded in  the mathematics of the central  
force-f ie ld  case). 
is  completely a l te red  as shown by Figs. 7.3, 7.4, and 7.5. 

The t ra jectory does not go through the target  and then 

The direction of approach t o  the  Martian "massless point" 

Figure 7.6 shows the resul t ing time h is tor ies  of the primer vector 
magnitudes corresponding t o  the nominal 0.002, 0.003, 0.0034, and 0.005$ 
errors .  It is seen t h a t  the  character of the thrusting program does not 
a l t e r  f o r  e r rors  l e s s  than O.OO3$ i n  tha t  the  primer vector magnitude i s  an 
increasing monotone. Above O.OO3$ errors, the primer decreases u n t i l  at  
O.005$ a new minimum is observed jus t  before the f i n a l  point. It is  
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interest ing t o  obSeNe the s imi la r i ty  of the behavior of the  f i n a l  control 
fo r  0.005% er rors  with that of the nominal a t  the primer vector minimum i n  
the  t r ans i t i on  phase. 

Detailed p lo ts  of the time h is tor ies  of the  in-  and out-of-plane control 
angles for  0 and 0.005% errors  are shown i n  Figs .  7.7 and 7.8. 

Trajectory Updated a t  212.9 Days 

The c?r?ly change that is  observed as the terminal phase progresses is  that 
the sens i t i v i ty  of the control t o  guidance errors becomes even more acute. 
Where O.OO5$ er rors  served t o  change the  ccntrol s ignif icant ly  a t  159.6 days, 
a t  212.9 days only O.OCQ5k errors  suff ice  t o  cause a s ignif icant  change. 

E g u r e s  8.0 through 8.3 give the by now fmillar aeqzence of t ra jectory 
p lo t s  and thrust-acceleration vectors. Again, the same change of control 
occurs a t  the end f o r  0.0005$ errors,  and it has been confirmed that the  
errors  produce an increase of $/2ar from the nominal value. 

Figure 8.4 gives the  time h is tor ies  o f t h e  primer vector magnitudes 
associated with the nominal t ra jectory and those resul t ing from O.OOO1, 0.0002, 
0.0003, and O.OOO54 errors.  Again, the  t rans i t ion  fYom increasing t o  decreasing 
monotones is  observed. 
the in- and out-of-plane control angles f o r  0 and O.OOO5$ errors .  
p lo t s  are  very similar t o  those of Figs. 7.7 and 7.8. 

Figures 8.5 and 8.6 show detailed t i m e  h i s tor ies  of 
These 

Trajectory Updated a t  200 Days with Errors 
i n  Heliocentric Radius Only 

A negative e r ro r  i n  heliocentric radius only, keeping the same velocity 
), e2 through e = 0), produces a decrease i n  the parameter 

"he one-dimensional field-fiee analogue indicates t ha t  there  should 
(i.e.,  c1 = - ( 
3,/2ar.  
be a la rge  change i n  the control i n  the i n i t i a l  section of the t ra jectory.  
Figure 9.0, which shows the i n i t i a l  in-plane steering angle plot ted against 
the percent change i n  heliocentric radius, ver i f ies  t h i s  prediction. 
heliocentric radius decrease of O.Ol$ produces a change i n  angle of about 
80 deg. 
i s  shown by Fig. 9.1 which gives the t i m e  h is tor ies  fo r  0, -0.006, and 
-0 .Ol@ heliocentric radius errors.  

A 

That the radius decrease affects  only the i n i t i a l  s teer ing angles 

An attempt w a s  made t o  correlate  the r e s u l t s  presented by Figs. 9.0 and 
9.1 quantitatively with nondimensional plots presented i n  Ref. 3, which 
t r e a t s  the problem of terminal guidance i n  field-free space fo r  a constant 
thrust-acceleration vehicle. A sat isfactory correlation w a s  not obtained. 
Reference 4, however, does predict  a high sensi t ivi ty  of the control with 
respect t o  the  i n i t i a l  boundary conditions fo r  a/2ar C 1. 
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PLAI?ETOCENTRIC NOMINAL TRAJECTORIES 

The effort in planetocentric trajectory analysis did not progress to the 
guidance stage, but was necessarily limited to attempts to establish a nominal 
minimum-time trajectory with the associated control. 

If the low-thrust guidance problem were treated in two distinct parts, 
involving a planetocentric phase where only the effect of the planet is 
included, and an interplanetary phase where only the gravity field of the 
SIL’~ is cmsidered, the naim.2. trsJectory could be estzblished 9s  fo l lms :  
First, a somewhat arbitrary spherical surface is defined (sphere of influence) 
on which the two trajectories are to be joined. Next, the minimum-time inter- 
planetary trajectory is determined, not with orbiting points to represent the 
planets as in the preceding section, but with boundary conditions on the 
spherical surfaces surrounding the planets. 
include transversality conditions which express the desirability that the 
trajectory pass through the optimum point on the spherical surface with a 
fixed speed in the optimum direction. 
separately, a parametric search is necessary to determine the optimum speed 
for a given propulsion system. 

The boundary conditions should 

Since the two trajectories are treated 

The boundary conditions for the planetocentric trajectory are a given 
initial position and velocity and the final position and velocity as dictated 
by the interplanetary trajectory. 
generally correspond to a point in a low-altitude circular orbit with a 
velocity increment due to a preliminary high-thrust ixupulse. If the initial 
boundary conditions corresponded to circular velocity, with no initial high- 
thrust velocity increment, the trajectory would cover many revolutions and 
would require considerable time since the low-thrust thrust -to-weight ratio 
is of the order of 
change is J2 times the original circular velocity, the trajectory will be 
an escape parabola which will not be modified much by the use of low thrust 
since the time would be short for this case. 

The initial boundary conditions would 

Of course, if the initial high-thrust velocity 

Method of Establishing Nominal Trajectories 

For Earth, the planetocentric trajectory should include a radius ratio 
of about 1/120, i.e., the spherical surface on which the planetocentric and 
heliocentric trajectories are matched should have a radius of about 120 times 
that of a low-altitude circular orbit. 
nominal minimum-time trajectory between these two radii proceeds as follows: 

The sequence for establishing a 

1. An escape parabola is computed with a periradius of 1.0 and a 
perivelocity of 1.414 where these numbers are in units of the 
radius and velocity of the initial circular orbit. Position and 
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velocity vectors a re  determined a t  500 points, equally spaced i n  
time along t h i s  parabola f’romthe periradius t o  the  given final 
radius R, corresponding t o  500 mesh points used i n  the algorithm. 

2 .  The coasting parabola i s  used as a s t a r t i ng  approximation for a 
variable-thrust t ra jectory between the two radii with the t i m e  
s p c i f i e d  t o  be somewhat less than tha t  required by the parabola. 
I n  t h i s  calculation the  transversali ty conditions, 

and 

A, = 0 i = 1, 2, 3 ( 6 . 2 )  

are employed where the xi are the f ina l  posit ion coordinates, the 
h i  a r e  the corresponding adjoint variables (components of the primer 
vector), p is  the primer vector magnitude, and R i s  the  given f i n a l  
radius. These t ransversal i ty  conditions analyt ical ly  express the 
f a c t  that, a t  this stage, only the final radius i s  specified while 
the direction of the f i n a l  radius vector and the f i n a l  velocity a re  
completely open and a re  t o  be optimized. 

3 .  The variable-thrust t ra jectory now serves as  a starting approximation 
f o r  a constant-thrust t ra jectory with the same boundary conditions. 
It i s  necessary that the  values of i n i t i a l  thrust acceleration and 
mass flow r a t e  specified f o r  the  constant-thrust t ra jectory be 
co-tible with the  time specified for the  variable-thrust t ra jectory.  

4. N e x t ,  the  i n i t i a l  velocity i s  decreased i n  s teps  from the  or iginal  
1.414 down t o  the desired value between 1.0 and 1,414. In t h i s  
sequence, the  converged trajectory and adjoint variables fo r  the  
previous i n i t i a l  velocity serve as a starting approximation for 
the  next. Because the direction of the  f i n a l  posit ion vector i s  
always open, t he  end point of the t ra jec tory  swings around as the 
in i t . i a l  velocity i s  reduced and the t ra jec tory  winds up l i k e  a 
spring 

5 .  A t  this point there ex is t s  i n  the computer a coplanar constant-thrust 
minimum-time t ra jectory with the  prescribed i n i t i a l  boundary con- 
dit ions,  but it probably does not reach the  proper f i n a l  boundary 
conditions. A f i n a l  tracking sequence is  required t o  change the 
f i n a l  boundary conditions t o  the  prescribed values. 
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Two examples from the sequence described i n  (4) above are  shown i n  
Figs. 10.0 and 10.1 f o r  a nominal radius r a t i o  of 1 t o  30. (A r a t i o  of 1 
t o  120, previously indicated t o  be required f o r  Earth escape, proved t o  
be unattainable due t o  the d i f f i cu l ty  of accommodating enough mesh points 
t o  adequately describe the  t ra jectory.)  
weight r a t i o  f o r  the  sample problem is 0.0015. The i n i t i a l  tangent ia l  
ve lcc i ty  is 1.35 i n  Fig. 10.0 and has been resuced t o  1.34 f o r  Fig. 10.1. 
This small  reduction in in i t ' i a lve loc i ty  causes the f i n a l  point t o  move 
counterclockwise approximately 30 deg and t h e  time t o  increase from 176.3 
t o  224.9 ( i n  un i t s  of the  time it takes a point i n  the  i n i t i a l  c i rcu lar  
o r b i t  t o  move through one radian). 

The assumed i n i t i a l  thrust-to- 

Machine Storage Problems 

The procediie outliried &ove a13 i l l u s t r a t ed  by Figs. 10.0 and 10.1 is 
l imited i n  pract ice  by the  storage capacity of the caaputer. 
500 mesh points employed i n  the algorithm t o  praduce the  t r a j ec to r i e s  o f  
Figs. 10.0 and 10.1 prac t ica l ly  f i l l  the en t i re  core storage capacity of an  
IBM 7094 computer. 

I n  fact ,  t h e  

Another problem is  that the mesh points are  evenly spaced i n  time. Since 
the  vehicle i s  moving very rapidly a t  the  beginning and slowly a t  t h e  end, 
t h i s  s i tua t ion  r e su l t s  i n  very low mesh-point density i n i t i a l l y ,  where the  
curvature is la rges t ,  and a high mesh point density toward the end, where 
the curvature i s  l e a s t .  
weighted toward the  beginning o f  the t ra jectory would solve t h i s  problem. 
As the t ra jec tory  is wound up i n t o  one or more revolutions, however, the 
radius becomes osc i l la tory  with time. I n  t h i s  s i tua t ion  only a variable 
mesh point spacing scheme such as t h e  one presented i n  the next section 
w i l l  suff ice .  

It might seem that mesh point spacing which is  

I n  conclusion, it can be s ta ted  that the f ini te-difference Newton- 
Raphson algorithm with the  tracking sequence ju s t  presented can, i n  principle,  
determine low-thrust planetocentric spiraling t ra jec tor ies ,  but not with 
r e s t r i c t ions  of both in-core storage and constant mesh-point spacing. 



"DE-VARYING GRAVITY FIED 

The t r ad i t i ona l  way of analyzing the  low-thrust interplanetary t ra jec tory  
problem is  t o  consider the vehicle t o  move i n  a sequence of central-force 
f i e lds  generated by the  most i n f luen t i a l  body a t  each point i n  the  t ra jec tory  
and employing patching a t  spheres of i n fhence  or asyrrptotic natcfiing. 
t h i s  method is  cer ta in ly  adequate f o r  purposes of mission analysis, i t s  vali- 
d i t y  is perhaps open t o  question f o r  the  more demanding functions of guidance 
and control.  Of course, for  the majority of time on the  interplanetary trip, 
the  i n f l t l e x e  of the @me+,s is ve-ry we& coqa red  t n  t h a t  of t.he s m  and 
the  so l a r  central-force f i e l d  is an extremely good approximation. 
there  e x i s t  regions i n  the  v i c i n i t i e s  of the i n i t i a l  and t a rge t  planets 
where the  respective gravi ty  accelerations due t o  the sun and planet a r e  
of the same order of magnitude. An examination of the nominal t ra jec tory  
of Fig. 4.6 w i l l  show t h a t  at both ends of the t r i p  a considera3le mcat 
of time is spent i n  these regions where the planetary effect  is not negligible.  

Although 

However, 

It was pointed out i n  the  last section that the  terminal phase of the 

Since a la rge  par t  of 
interplanetary t ra jec tory  is  a very c r i t i c a l  one with small guidance e r rors  
corresponding t o  large required changes i n  control.  
the  terminal phase takes place i n  t h e  proximity of t he  t a rge t  planet, it is  
not unreasonable t o  assume that the inclusion of the p lane t ' s  gravity f i e l d  
i n  the problem model would have a s ignif icant  influence on t h e  resu l t ing  
control.  

For these reasons, the problem was original ly  formulated f o r  a t i m e -  
varying gravi ty  f i e l d  including the  contributions from the  i n i t i a l  and ta rge t  
planets as well  as the sun. 
masses and the  planets were assumed to  be i n  constant Keplerian o rb i t s  about 
the sun. 

A l l  of the bodies were considered t o  be point 

Two ana ly t ica l  d i f f i cu l t i e s  forced the abandonment of t h i s  approach i n  
view of the l imited t i m e  available f o r  the study. 
orders of magnitude difference between interplanetary and planetocentric 
distances. 
insure a high mesh point density i n  regions having a l a rge  gravi ty  f i e l d  
gradient.  Before this approach was abandoned, however, t he  var ia t ional  
equations had been derived, a variable-mesh f ini te-difference Newton-Raphson 
algorithm had been coded, and convergence was achieved f o r  a minimum-time 
constant-thrust t ra jec tory  between two sets  of boundary conditions which 
were both well  away from any planetary s ingular i t ies  i n  the gravi ty  f ie ld .  
Despite the f a c t  t ha t  the planetary perturbation w a s  weak i n  the  region of 
the converged t r a j ec to ry  a difference i n  control w a s  noticed as compared t o  
the  corresponding solution for  the same boundary conditions without the  
planetary perturbations.  
stage, a b r i e f  description of the  problem formulation w i l l  be given. 

The first w a s  due t o  

The second was the  requirement of variable mesh point spacing t o  

Although t h i s  program is  s t i l l  i n  a development 
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Variational Quat i ons 

For t h e  case of a t i m e  varying gravi ta t ional  f ield generated by m point 
masses whose posit ions (xiJ, xzJ ,  XB~), 1 
t i m e ,  equations ( 3 . 1 3 )  and(3.12) can be generalized in to  the following simple 
f om:  

j * m, are known functions of 

i = 1, 2, 3 (7.1) 

J = l  

where $J is  the gm.ri-tationa1 cons+ant ef3the j t h  body (i .e., point mass), 
qi J - = - xi J 9 

of t he  vehicle and q, is the  i t h  comdinate of the j t h  gravi ta t ing body. 

f f h iq iJ ,  and rJ = (C qfJ )1'2. xi i s  the i t h  coordinate 
i =1 t =1 

The terminal t ransversal i ty  conditions can take t h e  form of optimal entry 
i n t o  an orbi t ,  o r  even optimal entry i n t o  a parametric family of orbi ts ,  about 
the  target body. 
t h i s  condition has been fixed as entry into a specif ied o rb i t  a t  a specified 
point. 
fixed-field problem. 

However, f o r  simplicity i n  numerical experiments t o  date, 

The a rb i t ra ry  scal ing of t h e  primer vector remains val id  as i n  t h e  

Equations f o r  the  Numerical Solution 

Since the  knowledge of the q i j  f o r  any j completely defines the  system, it 
i s  advantageous t o  choose a par t icu lar  j ,  call it 2, and Kite equation (7.1) 
w i t h  respect t o  the  qi j . Therefore, define & j = f, and Xi  = gi where 

and gi i s  determined by equation (7.2).  

The elements of t h e  Jacobian follow the pat tern of equation (3.19) 

(7.3) 
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There is no change i n  t h e  scal ing equation (3.18), but equation (3.21) becomes 

(7.5) 

Numerical Problems 

It i s  f a i r l y  c l ea r  that the  nature of t he  solut ion i s  going t o  change i n  
t he  v i c in i ty  of the  d i f fe ren t  bodies. For t h i s  reason, both the a b i l i t y  t o  
change 3 a t  several points i n  the  solution and the  means t o  handle variable 
mesh spacing is  required. 
been overcome. Recently, Breakwell and Rauch ( R e f .  5 )  have published a mixed 
ana ly t i ca l  and numerical solut ion t o  the  three mass-point, variable specif ic-  
impulse, optimum-rendezvous problem. This solut ion i s  in te res t ing  i n  two 
respects:  
numerical problems. Second, the variable specific-impulse problem of fers  
somewhat simpler and more s tab le  equat ims f o r  numerical experimentation. 

These problems have been attacked, but have not 

First, knowing t h e  general nature of t h e  solut ion a l l ev ia t e s  the  
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The basic  approach taken t o  date has been t o  choose such that r7/pJ 
In  addition, the mesh point spacing 

It appears that the  basic d i f f i cu l ty  of this 
i s  a minimum over all j a t  every point. 
is  mde proportional t o  ri/p;. 
approach is  the  severe discontinuity i n  the gradient of t h i s  function a t  
the  points where 3 changes value. 

a 
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RECOMMEXDATIONS FOR FURTHER RESEARCH 

The results of the present study have indicated a number of problems 

I which in the authors' opinion warrant further investigation. 

It is generally felt that while the present effort has developed an 
excellent numerical algorithm for use in low-thrust guidance problems, it 
still remains to exercise the dgorithm in a systematic way in order to gain 
a basic understanding of practical problems of low-thrust guidance and control 
in a central-force field, especially in the terminal phase. 
Slha t lo i i  such as rendezvous with a point in a circulas orbit should be 
studied and the optimal control from all points in the neighboring region 
of phase space determined. Perhaps from such a study, simple semi-empirical 
and/or semi-analytical terminal low-thrust guidance laws could be formd-ated 
and compared with the results of the numerical algorithm. 

A very genera7 

One question that is raised by the extreme sensitivity of the control 
to small guidance errors in the terminal phase is whether low-thrust systems 
with a very narrow range of available control can achieve rendezvous 
unassisted. This question is by no means academic. 

Since there is no space nuclear-electric powerplant currently being 
developed of sufficient capacity t o  provide prime power for an electric pro- 
pulsion system, the only hope for low-thrust systems in the near future is 
the use of solar power. 
fluid or the solar  radiation is converted directly into electrical energy, these 
devices will require large expanses of material to intercept the sunlight. 
Due to the large moments of inertia and stability problems of these vehicles, 
the thrust-attitude control probability will be severely limited. In fact 
the current thinking is in terms of constant thrust-attitude control. 

Whether solar energy is employed to heat a working 

It is recommended, therefore, that an interplanetary guidance study be 
undertaken for a vehicle constrained to direct its thrust throughout a very 
small solid angle. 
would be difficult to handle but probably not impossible with a modification 
of the present algorithm. 

Such a problem would involve inequality constraints which 

Perhaps as a requirement for actual low-thrust guidance, or at least as 
a complete solution to the realistic problem to which other less sophisticated 
guidance schemes should be compared, the time-varying field analysis started 
in this study should be continued. 

Finally it is believed that all that is required to solve the planetocentric 
problem is the use of variable mesh point spacing and storage outside of core. 
Since machine time would not be of prime consideration in a real-time, on-board 
computer application, external storage might be feasible. 
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